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Lecture 6: Principal Component Analysis

1 Population Principal Components

A principal component analysis is concerned with explaining the variance-covariance struc-
ture of a set of variables through some linear combinations of these variables. Its general
objectives are (a) dimension reduction and (b) interpretation.
Consider p random variables X1, . . . , Xp. Principal component analysis seeks to select a new
coordinate system obtained by rotating the original system with X1, . . . , Xp as the coordinate
axes. The new axes represent the directions with maximum variability and provide a simpler
and more parsimonious description of the covariance structure.
Let X ′ = (X1, . . . , Xp)

′. Denote the covariance matrix of X by Σ whose eigenvalues are
λ1 ≥ λ2 ≥ · · ·λp ≥ 0. Let Yi = a′iX = ai1X1 + ai2X2 + · · ·+ aipXp be a linear combination
of X. Then, we have

Var(Yi) = Var(a′iX) = a′iΣai, i = 1, . . . , p (1)

and, more generally, for p such linear combinations,

Cov(Yi, Yj) = a′iΣaj, i, j = 1, . . . , p.

The principal components (PC) are those linear combinations Y1, . . . , Yp that are uncorre-
lated and whose variance in (1) are as large as possible. Thus,

The 1st PC = linear combination a′1X that maximizes Var(a′1X) subject to a′1a1 = 1.

The 2nd PC = linear combination a′2X that maximizes Var(a′2X) subject to a′2a2 = 1,

and Cov(a′1X,a′2X) = a′2Σa1 = 0.

In general,

The ith PC = linear combination a′iX that maximizes Var(a′iX)

subject to a′iai = 1 and Cov(a′jX,a′iX) = 0, j = 1, . . . , i− 1.

Result 8.1. Let Σ be the covariance matrix of the random vector X ′ = (X1, . . . , Xp)
′. Let

the eignevalue-eigenvector pairs of Σ be (λ1, e1), . . . , (λp, ep) such that λ1 ≥ λ2 ≥ · · · ≥ λp.
Then the ith PC of X is given by

Yi = e′iX = ei1X1 + · · ·+ eipXp, i = 1, . . . , p.



Furthermore,
Var(Yi) = e′iΣei = λi, i = 1, . . . , p,

Cov(Yi, Yj) = e′iΣej = 0, i 6= j.

If some λj are equal then the choices of the corresponding coefficient vectors ej and, hence,
Yj are not unique.
Proof. The result follows Eq. (2.51) and (2.52) of the textbook. See Page 80.

Result 8.2. Let Σ be the covariance matrix of the random vector X = (X1, . . . , Xp)
′ and

(λ1, e1), . . . , (λp, ep) be the ordered (in increasing order) eigenvalue-eigenvector pairs of Σ.
Then

p∑
i=1

σii =
p∑

i=1

Var(Xi) =
p∑

i=1

λi =
p∑

i=1

Var(Yi).

The proportion of total population variance explained by the ith PC is

λi∑p
j=1 λj

.

Let ρX,Y be the correlation coefficient between the random variables X and Y .

Result 8.3. Let Yi = e′iX be the PC of the random vector X with covariance matrix Σ.
Then,

ρYi,Xk
=
eik
√
λi√

σkk
, i, k = 1, 2, . . . , p.

Proof: Use Xi = a′iX, where ai is the ith unit vector in Rp, and Σei = λiei.
Correlation matrix: Let Z = D−1X, where D = diag{√σ11, . . . ,

√
σpp} with σii being

the (i.i)th element of the covariance matrix Σ of X. Then the ith PC of Z is

Yi = e′iD
−1(X − µ),

where µ = E(X) and (λi, ei)s are the ordered eigenvalue-eigenvector pairs of ρ = Cov(Z).
Moreover,

p∑
i=1

Var(Yi) =
p∑

i=1

Var(Zi) = p

and
ρYi,Zk

= eik
√

Λi, i, k = 1, . . . , p.

Remark: Principal component analysis depends on the scales of X. Thus, in some appli-
cations, correlation matrix is used in PCA to obtain scale-invariant results.
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2 Sample PC

Suppose that the data x1, . . . ,xn represent n independent draws from some p-dimensional
population with mean µ and covariance matrix Σ. Let x̄, S and R be the sample mean,
covariance matrix and correlation matrix, respectively. The sample PCs are the counterparts
of the population PCs with Σ and ρ replaced by S and R.

2.1 The number of PCs

The scree plot which is a time-series plot of the eigenvalues of S or R in descreasing order.
That is, the scatter-plot of (i, λ̂i), i = 1, . . . , p. By looking for an elbow (bend) in the scree
plot, we can determine the number of PCs. We shall mention some recent works that use
information criteria to select the number of principal components later when we discuss
factor models.

2.2 Large sample inferences

Asymptotic results for eigenvalues and eigenvectors are only available under the normality
assumption and the condition that all eigenvalues are distinct and positive. Some limited
results start to appear when the variables are not normally distributed.
Anderson (1963, Annals of Mathematical Statistics) derived the following large sample distri-
bution theory for the eigenvalues λ̂ = (λ̂1, . . . , λ̂p)

′ and eigenvectors ê1, . . . , êp of the sample
covariance matrix S:

1. Let Λ be the diagonal matrix of eigenvalues λ1, . . . , λp of Σ, then
√
n(λ̂ − λ) ∼

Np(0, 2Λ2).

2. Let

Ei = λi

p∑
k=1,k 6=i

λk
(λk − λi)2

eke
′
k,

then
√
n(êi − ei) ∼ Np(0,Ei).

3. Each λ̂i is distributed independently of the elements of the associated êi.

Property 1 implies that, for large n, the sample eigenvalues λ̂i are independently distributed.
Moreover, λ̂i has an approximate N(λi, 2λ

2
i /n) distribution. Using this result, a large sample

100(1− α)% confidence interval for λi is provided by

λ̂i

1 + z(α/2)
√

2/n
≤ λi ≤

λ̂i

1− z(α/2)
√

2/n
,

where z(α/2) is the upper 100(α/2) percentile of s standard normal distribution.
Peoperty 2 implies that the ê′is are normally distributed about the corresponding ei’s for
large samples. The elements of each êi are correlated, and the correlation depends to a large
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extent on the separation of the eigenvalues λ1, λ2, . . . , λp and the sample size n. Approximate
standard errors for the coefficients êi,k are given by the square roots of the diagonal elements

of (1/n)Êi, where Êi is derived from Ei by substituting λ̂i’s for λi’s and êi’s for the ei’s.

Testing for the equal correlation structure: Consider the null hypothesis

Ho : ρ = ρo =


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


and the alternative hypothesis H1 : ρ 6= ρ0. Lawley (1963) proposed a testing procedure.
Let

r̄k =
1

p− 1

p∑
i=1,i 6=k

rik, k = 1, 2, . . . , p; r̄ =
2

p(p− 1)

∑∑
i<k

rik,

γ̂ =
(p− 1)2[1− (1− r̄)2]
p− (p− 2)(1− r̄)2

,

where r̄k is the average of the off-diagonal elements in the kth column of R and r̄ is the
overall average of the off-diagonal elements. The large sample approximate α-level test is to
reject Ho in favor of Ha if

T =
(n− 1)

(1− r̄)2

∑∑
i<k

(rik − r̄)2 − γ̂
p∑

k=1

(r̄k − r̄)2
 > χ2

(p+1)(p−2)/2(α).

Remark: The R command of PC analysis is princomp.
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